Model finds key to COVID-19 deaths in the elderly


Friday, 20 May, 2022

Model finds key to COVID-19 deaths in the elderly

A person’s ability to fight COVID-19, like other infections, largely depends on their immune system’s ability to replicate the immune cells effective at destroying the SARS-CoV-2 virus that causes the disease.

These cloned immune cells cannot be infinitely created, and a key hypothesis of a new University of Washington study is that the body’s ability to create these cloned cells falls off significantly in old age.

This genetically predetermined limit on your immune system may be the key to why COVID-19 has such a devastating effect on the elderly, according to a model created by UW research professor James Anderson.

“When DNA split in cell division, the end cap — called a telomere — gets a little shorter with each division,” said Anderson, who is a modeller of biological systems in the School of Aquatic and Fishery Sciences.

“After a series of replications of a cell, it gets too short and stops further division. Not all cells or all animals have this limit, but immune cells in humans have this cell life.”

The average person’s immune system coasts along pretty well despite this limit until about 50 years of age. That’s when enough core immune cells, called T cells, have shortened telomeres and cannot quickly clone themselves through cellular division in large enough numbers to attack and clear the COVID-19 virus, which has the trait of sharply reducing immune cell numbers, Anderson said.

Importantly, he said, telomere lengths are inherited from your parents. Consequently, there are some differences in these lengths between people at every age as well as how old a person becomes before these lengths are mostly used up.

Anderson said the key difference between this understanding of aging, which has a threshold for when your immune system has run out of collective telomere length, and the idea that we all age consistently over time is the “most exciting” discovery of his research.

“Depending on your parents and very little on how you live, your longevity or, as our paper claims, your response to COVID-19 is a function of who you were when you were born, which is kind of a big deal,” he said.

To build this model the researchers used publicly available data on COVID-19 mortality from the Center for Disease Control and US Census Bureau, and studies on telomeres, many of which were published by the co-authors over the past two decades.

Assembling telomere length information about a person or specific demographic, he said, could help doctors know who was less susceptible. And then they could allocate resources, such as booster shots, according to which populations and individuals may be more susceptible to COVID-19.

“I’m a modeller and see things through mathematical equations that I am interpreting by working with biologists, but the biologists need to look at the information through the model to guide their research questions,” Anderson said.

“The dream of a modeller is to be able to actually influence the great biologists into thinking like modellers. That’s more difficult,” he admitted.

One caution he has about this model is that it might explain too much.

“There’s a lot of data supporting every parameter of the model and there is a nice logical train of thought for how you get from the data to the model,” he said.

“But it is so simple and so intuitively appealing that we should be suspicious of it too. As a scientist, my hope is that we begin to understand further the immune system and population responses as a part of natural selection.”

Image credit: ©stock.adobe.com/au/francescoridolfi.com

Related News

New resource to help asthma patients sleep well

The National Asthma Council of Australia has released a resource to help health professionals...

Qld symposium examines ED blockages and more

Close to 100 delegates travelled from across Queensland to attend the 2024 Emergency Medicine...

New breast cancer tech unveiled at Baringa Private Hospital

Technology for breast cancer treatment can now be accessed by patients on the NSW mid north coast.


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd