Osteoarthritis discovery could slash health bill

Friday, 16 October, 2020

Osteoarthritis discovery could slash health bill

Researchers at University of South Australia (UniSA) are looking for a new biomarker for osteoarthritis (OA), a painful condition that affects more than two million Australians and costs the country an estimated $23 billion a year.

By using state-of-the-art imaging techniques to identify signs of OA, the research team are learning more about the molecular changes that indicate the severity of cartilage damage.

One of the main challenges of OA research is identifying why cartilage degrades at different rates in the body. A study led by PhD student Olivia Lee and supervisor Associate Professor Paul Anderson using mass spectrometry imaging (MSI) has mapped complex sugars on OA cartilage, showing different sugars are associated with damaged tissue compared to healthy tissue.

“Despite its prevalence in the community, there is a lot about osteoarthritis that we don’t understand,” Associate Professor Anderson said.

“It is one of the most common degenerative joint diseases, yet there are limited diagnostic tools, few treatment options and no cure.”

Existing OA biomarkers are still largely focused on bodily fluids, which are neither reliable nor sensitive enough to map all the changes in cartilage damage.

By understanding the biomolecular structure at the tissue level and how the joint tissues interact in the early stages of OA, UniSA researchers say any molecular changes could be targeted to help slow the progression of the disease with appropriate medication or treatment.

In Australia, $3.75 million is spent on joint replacements for OA patients each year, and other indirect costs related to lost work productivity and loss of wellbeing are estimated to be more than $23 billion a year.

In a recent paper published in the International Journal of Molecular Sciences, Lee and her colleagues from UniSA’s Musculoskeletal Biology Research Laboratory and the Future Industries Institute explored how advances in MSI to detect OA are promising.

“To date, diagnosing osteoarthritis has relied heavily on X-rays or MRI, but these provide limited information and don’t detect biomolecular changes that signal cartilage and bone abnormalities,” Lee said.

“By contrast, alternative imaging methods such as MSI can identify specific molecules and organic compounds in the tissue section.”

MSI has already demonstrated its strengths in identifying biomarkers for different types of cancer, and UniSA researchers are hopeful that it can achieve the same for early diagnosis of OA.

Image credit: ©stock.adobe.com/au/ojoel

Related News

Call to action to eliminate HIV-related stigma

Marking World AIDS Day on 1 December, HIV advocates are calling for greater efforts and...

HESTA Excellence Awards winners announced

Eight organisations and teams have been recognised across disability services, allied health,...

Drink slows disease progression in early-stage Alzheimer's

A nutritional drink has been found to slow the decline of cognition, function, brain atrophy and...

  • All content Copyright © 2020 Westwick-Farrow Pty Ltd